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We show that for thd®y — Py_, spectral element method, in which velocity and
pressure are approximated by polynomials of ofdeandN — 2, respectively, nu-
merical instabilities can occur in the spatially discretized Navier—Stokes equations.
Both a staggered and nonstaggered arrangement dfl the2 pressure points are
considered. These instabilities can be masked by viscous damping at low Reynolds
numbers. We demonstrate that the instabilities depend on the formulation of the
nonlinear term. The numerical discretization is stable for the convective form but
unstable for the divergence and the skew-symmetric form. Further numerical anal-
ysis indicates that this instability is not caused by nonlinear effects, since it oc-
curs for linearized systems as well. An eigenvalue analysis of the fully discretized
system shows that an instability is introduced by the formulation of the nonlinear
term. We demonstrate that the instability is related to the divergence error of the
computed solution at those velocity points at which the continuity equation is not
enforced. (© 2001 Elsevier Science

Key Words:spectral element method; Navier—Stokes equations; numerical insta-
bility; incompressible flow; formulation of nonlinear term.

1. INTRODUCTION

We consider flow simulations at high Reynolds numbers with a scheme that provides I
accuracy and geometrical flexibility. For this purpose, the incompressible Navier-Stol
equations are discretized in time by mixed implicit/explicit finite-difference schemes a
in space by a spectral element method (SEM). Spectral element methods are base
the decomposition of the computational domain into a nunkbef subdomains. In each
subdomain the solution is expanded in tensor-product-based Jacobi polynomials of o
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N. As basis functions, Lagrange polynomials based on Gauss and Gauss—Lobatto p
are often used.

In numerical simulations of incompressible flows the momentum equations have to
solved under the continuity constraint. This can be achieved either by solving the en
system for pressure and velocity in a coupled manner or by decoupling the velocity fr
the pressure. In spectral element simulations both approaches have been employec
example, Karniadakis and co-workers [14, 15, 24] use a high-order splitting method, wh
velocity and pressure are discretized at the same pdits{ Py method). They deduce a
Poisson equation for the pressure, which is solved at every time step together with boun
conditions derived from the previous velocity fields. The method introduces a splitting ert
which can be made of higher order in the time step. To avoid this splitting error, the influer
matrix technique (see, e.g., [4, 16, 17]) can be applied, which is &go-a Py method. This
technique also utilizes a Poisson equation for the pressure, but the boundary condition
derived from the continuity equation at the boundaries of the domain. This provides a cl
treatment of the pressure boundary conditions but has a drawback of high computati
costs when in three dimensions (3D) no homogeneity can be exploited in any direct
However, if the computational domain is periodic in one or two directions, the influen
matrix technique can be applied very efficiently (see, e.g., [10, 11]).

When momentum and continuity equations are solved in a coupled fashion, the spac
the basis functions for the velocityand the pressumg have to satisfy the well-knowimf-
supcondition (see, e.g., [3]). To comply with this condition in SEM, the presgumed the
velocityuare often approximated by functions belonging to different spaces. For examj
in the Py — Py_2 method,uis represented by polynomials two orders higher thdi,

8, 19]. By this approach, pressure boundary conditions are avoided, and the entire sy
can be solved using the Uzawa technique [3]. In the present paper, we analyze two var
of the Py — Py_2 SEM. One is the classical method of Maday and Patera [19], wlisre
discretized at the Gauss—Lobatto—Legendre (GL) pointgjaatdthe Gauss—Legendre (G)
points. The other one is tH&y — Py_> method used by Rgnquist [22] in which the velocity
uis discretized at th& + 1 GL points and the pressure at tNe— 1 inner GL points in
each element. The first method is referred as the “staggered” approach and the seco
the “nonstaggered” approach throughout this paper.

The discretization of the incompressible Navier—Stokes equations can be performe
several ways, which differ in the formulation of the nonlinear term (for an overview ¢
the formulations see, e.g., Gresho [9]). Among these alternatives are the convective f
(u- V)u, the divergence form diw® u), the skew-symmetric forg(u- V)u+ 1 div(u®
u), and the rotational form-(u x rotu) + % V |u? (here the tensor product of two vectors
is expressed by the operat®). In the past, the rotational and convective forms were th
preferred choices for many flow simulations (see, e.g., Cagiusb [4]), because of their
simplicity and computational efficiency. Several authors (e.g., Zang [27] and Blaksdéll
[2]) suggested that, at least for single-domain spectral methods, the skew-symmetric f
should be used, in order to minimize aliasing errors. In a recent work, Kravchenko and M
[18] analyzed aliasing and truncation errors for spectral and finite-difference calculatic
using different formulations of the nonlinear term. They found that for spectral and higt
order finite-difference methods aliasing errors are more harmful than for low-order fini
difference methods. Furthermore, they showed that for Fourier spectral and finite-differe
methods the skew-symmetric and the rotational forms are energy conserving even in
presence of aliasing errors. Horiuti and Itami [13] examined the truncation error of t
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rotational form for a low-order finite-difference method, which they applied in a direc
numerical simulation of turbulent channel flow.

In [25] we showed that the skew-symmetric formulation, as well as the divergence and
standard rotational formulations, of the nonlinear term can lead to numerical instabilit
in the staggeredPy — Py_2 SEM, while the convective and a variant of the rotational
formulation are stable. The purpose of the present paper is to extend this examinatio
the nonstaggereBy — Py_2 method and to analyze and clarify the observed instabilities
We perform an eigenvalue analysis of the fully discretized system and demonstrate
an instability is introduced by some formulations of the nonlinear term. We show that tt
instability is not caused by nonlinear effects but that it occurs also for a linearized proble
Itis also confirmed that the instability is not affected by the choice of the time-discretizati
scheme, as it is present already in the semidiscretized equations. Moreover, the influ
of the Reynolds number on the instability is discussed.

2. DISCRETIZATION OF NAVIER-STOKES EQUATIONS
We consider the incompressible Navier—Stokes equations (NSES) on a dargaien
by

1
@——vaq:—c(y)uﬂ, (1)

ot Re
divu= 0, 2)
together with appropriate initial and boundary conditions. Hemgnotes the velocity,
C(uyuis the nonlinear terny is the pressure, ants a forcing term. The Reynolds number

Re=UL/v is based on a characteristic vefoclty a characteristic length, and the
kinematic viscosity.

2.1. Energy Conservation Properties of Navier—Stokes Equations

The kinetic energy of the flow withif is obtained by multiplying Eq. (1) witbhand
integrating over2. This yields

1 .
Uy = - (Vu Vu + (f,u + (g, divu) — (CLU U Y), )

NI =
o

t

where, for simplicity, homogeneous Dirichlet boundary conditionsifime assumed. The
inner product-, -) is defined by

(u, v):/u(x)v(x)dx. 4)
Q

Note that the integrals of the pressure gradient and the viscous term are integrated by
exploiting the homogeneous boundary conditions. Employing the continuity Eq. (2), t
equation of the kinetic energy for a flow without external forces- 0) is given by

1d 1
E&@y):_ﬁe(w’ VU — (Cuu. %)
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The convective operatdris skew-symmetric and conserves kinetic energy, as can be sho
easily. Considering the convective term in the fqtmV) u, integration by parts for a given
vector fieldv yields

(C@My)z—%gcuwr—@dwgy%+/n@-w@-mds (6)
0Q

wheren is the normal vector o 2. In the continuous case diwanishes, so that for
homogeneous boundary conditionswome obtain

CLuY) =—-UCLv). (7)

Thus, the convective operator is skew-symmetric and conserves kinetic energy, since
u=v Eq. (7) can only be satisfied if

(Cuuuy =0. 8

In a numerical solution the continuity equation (2) is satisfied only in some discrete ser
with the consequence thatdivy, U) does not vanish exactly in general and the convectiv
operator is not necessarily energy conserving. Whether or not the divergengadermu)
vanishes depends on the discretization of the convective operator.

2.2. Spatial Discretization

For the spatial discretization, Egs. (1) and (2) are transformed into weak formu=g)d
in X x M such thatv € Xo,Vge M

1
(au/at,v) + Ee(V_U, V) — (g, divy) = —(CUuv) + (f,v), )
(g, divy) = 0. (10)

The spaces far v andq, g are defined as

X={ve (7—[1(9))0| ,v satisfies the required boundary conditipns ~ (11)
Xo={ve (Hl(Q))d ,v =0 on the boundar}, (12)

M = {q € /:Z(Q),/ q(x)dx = O}, (13)
Q

whered is the number of velocity componeni&?(2) is the space of all square integrable
functions over2, andH*(Q) is the space of all functions ii>($2) whose first derivatives
are also inC3(Q).

The discretization proceeds by decomposing the computational d@riato a number
K of non-overlapping subdomair®, (spectral elements). In each element the solutiol
is expanded in tensor-product-based polynomials of okjeand the discrete polynomial
subspaceXy C X andMy c M, inwhich the velocity and the pressure are approximatec
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have to be defined properly. For simplicity, in the following we confine ourselves to tw
dimensional flows. In order to avoid spurious pressure modes, Maday and Patera |
suggested the approximation spaces

Xn,o = Xo NPE k() x PE« (), (14)
Xn = X NP (Q) x PR (Q), (15)
My = MNPE_, (), (16)

where Py k is the space of all 1D polynomials of degree equal to or less thane-
stricted toQy, andPj  is the tensor product Py  in two dimensions. The velocities
are approximated by the Lagrange interpolation polynomials based dw #hé Gauss—
Lobatto—Legendre (GL) points, and we consider two different approaches for the pres:
discretization. The first is the classical staggered method [19], where the pressure is
cretized by the Lagrange interpolation polynomials based omMthel Gauss—Legendre
(G) points. The second approach is the nonstaggered method (see, e.g., [22]), wher
pressure is discretized at thb— 1 inner GL points in each spectral element. In both case
we refer to the respective set of points as “pressure points.” For the nonstaggered appr
all inner products in (9) and (10) are evaluated by Gauss—Lobatto integration. In the s
gered method the terntg, divv) and(g, divu) are evaluated by Gauss integration, while
all other terms are evaluated by Gauss-Lobatto integration. Note that all higher dimensic
integration rules are obtained by tensor products of the 1D formulas.

The final discretized weak form of Eqgs. (1) and (2) then reads: &irg) € XN x My
such that'v € Xy 0 andvg € My

1
WL, v)n + (VU Vo)n — (@, dive)y = —COU N + (F. 0w, 17)
(g,divun =0, (18)

where(., -) indicates the discrete inner product. Since the velagtyd the test functions
v are defined in spaces different from those of the presguaad the test functiong,
interpolations have to be used before the integral&yirdivv)y and (g, divuy can be
evaluated.

As pointed out before, the nonlinear term can be written in different ways. The vario
formulations analyzed in the present paper are summarized in Table |. Note that all der
tives ofuare computed at the velocity points. This is in contrast to the continuity equati
(18), where the derivatives afare computed at the pressure points.

TABLE |
Formulations of the Convective Term

Notation Cuu Description S/U
Ceon(U) U u-Vyu Convective form S
Cav(U) U div (u® v Divergence form U
Coen(W U 1U- V)u+ divue v Skew-symmetric form U

Note. uR v isthe tensor product ofandv. The inner productis- v; u is the velocity.S = stable,
U = unstable, according to present analysis.
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2.3. Temporal Discretization

The semidiscrete Egs. (17) and (18) are now discretized in time, assdmir@ The
linear terms YRe(Vy, Vv)y and(q, divv)y are treated implicitly, while the nonlinear term
(C(u)u,v)y is treated explicitly. Two different time-discretization schemes are employe
The first scheme we use is a Crank—Nicolson scheme for the linear term and the pres
together with a third-order Adams—Bashforth method (CN/AB3) for the nonlinearterm. T
second scheme employs a third-order backward differentiation scheme for the linear t
together with a third-order extrapolation for the nonlinear term (BDF3/EX3), according
Karniadakiset al. [15]. The latter is discussed in the following in more detail.

The BDF3/EX3 time discretization leads to a fully discretized form of the NSEs

1 1 3 1
|:ReE + K§:| UnJrl _ QanJrl — Kt 3§Un _ EEunfl + §§Un72 + 39(Un) yn
—3cuhHu"t+CcuHun?, (19)
Du™t =0, (20)

whereE, DT, D, andC denote the discrete versions of the Laplacian, the gradient, tl
divergence, and convective operators, respecti&lis the (diagonal) mass matrix with
x = 11/(6At). Hereinu" andq" denote the pointTNise values ofandq at velocity and
pressure points, respectively, at time step= n At. The fully discrete system (19), (20)

can be recast into the general form
un+l g
- 12 @)

with the Helmholtz operator

and where the right-hand side has the form
g=gCuMHu".cuHu"t cu"AHu" A Ut unt u ).

The general form (21) can be solved using the classical Uzawa algorithm (see, e.g.,
In this approach the momentum equation is formally solved for the velo&ity; which is
then inserted into the continuity equation. This leads to an equation for the pressure,

DH™'D'g"' = -DH g =irg, (22)
=S

with the right-hand side,. From the pressumg™** the velocityu"** is evaluated according
to Eq. (21).

Beside the Uzawa algorithm we also employed a special time-splitting approach for
Py — Pn_2 SEM suggested by Madagt al. [20] and extended to more general finite-
element methods by Perot [21]. This approach, which was used for example by Couzy
and Fischer [8], is similar to the Uzawa algorithm in that no pressure boundary conditic
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are needed. However, since we obtained essentially the same instability results as fo
Uzawa algorithm, we confine our presentation to the latter algorithm. (Note that the tin
splitting approach in [20] is not to be confused with the classical time-splitting method |
15] often used irPy — Py SEMS).

3. RESULTS

3.1. Numerical Results for the Different Formulations

The classicalPy — Py_> SEM, in which velocity is discretized at the GL points and
pressure atthe G points, was applied previously to various flow problems. Maday and Pe
[19], in their fundamental paper on this technique, simulated the 2D flow past a cylinc
atRe= 150 and the flow around a cylinder in a grooved chann&eat 225. Couzy [6]
performed a simulation of the flow over a backward-facing step in 3D at Reynolds numb
up to Re= 343. Only very few simulations using thBy — Py_> SEM at significantly
higher Reynolds numbers have been presented so far, one of these being the study ¢
flow past a cylinder aRe= 9500 by Fischer [8]. He also reported on the simulation of the
linear-stability problem of plane channel flonR¢ = 7500, where the parabolic mean flow
is disturbed by small-amplitude 2D Tollmien—Schlichting waves. The growth rate of t
perturbation energy was compared with the solution from linear-stability theory and it w
shown that for sufficiently fine discretization an excellent agreement is achieved. The se
test case was studied in our previous work [25], where we showed that good agreer
with the linear-stability theory can only be obtained if the convective form of the nonline
term is employed. The divergence form or the skew-symmetric form, on the other hand,
to numerical instabilities. Note that in [8] Fischer also used the convective form (prive
communication, 1999). The present method was employed in [26] for a study of the .
forward-facing step flow.

3.1.1. Nonlinear Results and Linearization

The numerical instabilities observed in [25] are analyzed more closely in the following. ,
a test case we consider a 2D plane channel fldReat 7500, based on half channel height
and centerline velocity, with periodic boundary conditions in the streamwise direction a
no-slip conditions at the walls. The flow is driven by a pressure gradijitix = —2/Re
As an initial condition, a laminar Poiseuille profile is prescribed, which is disturbed &
numerical noise of order 2. We computed the time history of the perturbation energy

27 1
E®) =/ / [(1— X2 — up)? + u2] dx (23)
0 -1

obtained for different formulations of the nonlinear term according to Table I. In Fig. 1 tt
results for the classical staggered approach are shown. It is evident from the figure
the simulation results are strongly dependent on the formulation of the nonlinear term.
the divergence form and the skew-symmetric fdgif) grows exponentially and the simu-
lation becomes unstable. A stable solution is obtained for the convective form only. In Fig
the simulation results for the nonstaggefg — Py_> SEM are shown. It is remarkable
that we obtain the same stability behavior as for the classical approach (i.e., the diverge
and skew-symmetric forms are unstable and the convective form is stable).
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FIG.1. Time history of perturbation enerd@(t) in plane channelflow for classical staggeRd— Py_, SEM.
Comparison of results from Navier—Stokes simulations (nonlin) and simulations based on the Oseen equa
(lin). Results for different formulations of the convective teinfRe= 7500, 4x 4 elementsN = 8).

To simplify the problem and exclude nonlinear effects, we consider the Oseen equati
[1] which are the linearized form of the NSEs

ou 1
— — 52 AU+ Vg = —Cwuy

24
ot Re (24)

divu= 0, (25)
wherewis a given divergence-free velocity field. At this point we confine our presentatic
of the linear results to the classical (staggered) approach. For our tesivéasaken as
the laminar plane Poiseuille flow. The results obtained for different formulations of tl
linearized convective operator are also given in Fig. 1. It can be seen that for the lineari
divergence and skew-symmetric forms the amplification rate of the perturbation energ
smaller than for the nonlinear case, but the energy nonetheless also grows exponentiall
E(t) < 1072). Itis evident from the figure that a linear numerical instability is introduce:
by the divergence form and the skew-symmetric form of the convective term, which is 1
related to nonlinear effects.

6
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FIG. 2. Time history of perturbation enerdy(t) in plane channel flow for nonstaggeréd — Py_, SEM.
Navier—Stokes simulation for different formulations of the convective (fRe= 7500, 4x 4 elementsN = 8).
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We analyzed this instability with respect to its dependence on the temporal and s
tial resolution and found no effect on the general stability properties. (Of course, t
time step was always chosen well below the CFL stability limits of the EX3 and AB
schemes, respectively.) Furthermore, the effect of the boundary conditions was teste
SEM only C° continuity over the boundaries is required, which means that the deriv
tives of the velocity are not forced to be periodic. In order to exclude the possibility th
the stability problem originates from the special treatment of the periodic boundaries,
conducted simulations where the periodic boundary conditions were replaced by Diri
let conditions, and encountered the same instabiiyly for sufficiently low Reynolds
numbers(below Re= 100 in the considered problendid all the schemes remain sta-
ble, irrespective of the treatment of the nonlinear terifiss is obviously due to viscous
damping, as discussed in the following. We remark here that the formul@tign re-
mains stable far beyond the short initial time shown in Fig. 1. We have conducted simt
tions over long integration times,> 1000, in which this formulation did not develop any
instability.

3.1.2. Effect of Viscous Damping

Itis interesting to note that we found the skew-symmetric form to be unstable, while ott
investigations (e.g., Rgnquist [23], who used the nonstaBger Pn_» SEM) suggested
that it should be the preferred choiceRy — Py_2 SEM. However, Rgnquist [23] analyzed
a plane channel flow at the rather low Reynolds number of about 200, while we consi
a test case foRe= 7500, where the physical damping is much smaller. Although for lov
Reynolds numbers the numerical instability is masked by the physical damping, accur
suffers from this (“unstable”) formulation of the nonlinear term. To investigate the influen
of the skew-symmetric form on accuracy, we employed the staggered SEM to the simula
of the Orr—Sommerfeld test problem, used by Fischer [8], but for lower Reynolds numbe
In Fig. 3 we compare the exact solution of the linear stability theory with the simulatic
results alRe= 100 andRe= 500. ForRe= 500, where viscous damping is already very
small, the simulation becomes unstable. On the other hand, the simulatiBe 61100
remains stable, but the damping rate does not agree with the exact IRee£at00; it rather

18 | G—OE, Re=500 -
B N E,, Re=500 ]
! E—E&E, Re=100 |
10 | —— E,_ Re=100 -
0.6 1

In(E/E,)

0.2
c ~.
—02 BT .

-0.6

-1.0 * *
0.0 0.1 0.2 0.3 0.4 0.5

t/TTS

FIG. 3. Time history of computed perturbation enerBy in plane channel flow for convective operator in
skew-symmetric form at different Reynolds numbexs=£ 12, 2x 2 elements). Comparison with resuls, of
linear stability theory. (Results for staggered method.)



STABILITY OF SPECTRAL ELEMENT METHODS 315

agrees with that foRe= 500. Thus, even for low Reynolds numbers where the scheme
stable, inaccurate growth rates are obtained when using the skew-symmetric form.

3.2. Discussion of the Discretized Convective Term
3.2.1. Nonlinear Operators

Since numerical instability is related to the formulation of the nonlinear term, it is appr
priate to investigate the discretized nonlinear term. In the continuous case all formulati
of C are equivalent and the divergence form can be transformed into the convective fi
by means of the continuity equation

CUu=div(u®u = (u-gragu+udivu. (26)
~—

=0

However, in the discrete case the divergence form is numerically equivalentto the convec
form plusan additional divergence term, i.e.

(Caiv@U V)N = (divUu® ), v)n = ((U-grad u v)y + Udivy v)y . (27)
#0

The divergence term on the right-hand side of Eq. (27) does not vanish exactly, becaus
continuity constraint is enforced at the pressure points only.

Note that in the computation of the products in the nonlinear term, Eq. (27), and
similar equations later in this work, additional aliasing errors occur. A possible concerr
that these aliasing errors could cause the observed instability. In fact, for a Fourier spe
scheme Kravchenko and Moin [18] reported that the instability that occurred with sol
formulations of the nonlinear term could be removed by dealiasing. However, P. F. Fisc
(private communication, 2001) found that for the same numerical scheme as used he
(i.e., Py — Py_2 SEM based on a staggered grid) dealiasing did not remove the instabill
Note also that aliasing errors can be made very small by increasing the resolution, whe
the divergence term will turn out to be dominant and to cause the observed instabilit
which become worse with increasing resolution. For this reasons, aliasing errors are
explicitly considered in the present paper.

For a further investigation of the divergence term, we consider an abridged oper:
consisting of the second term of Eq. (27) only,

(Cau v)n := (udivy v)N. (28)

For a plane parallel flow such as the undisturbed plane Poiseuille flow the first term
Eq. (26) vanishes, so th&, is equal toCgj, of Eq. (27). Performing an (undisturbed)
Poiseuille flow simulation with this form of the convective operator, we found thakt the
norm of the divergence at the pressure points indeed remains at roundoff-error level, w
the divergence afiat the velocity points grows exponentially in time. In Fig. 4 and Fig. ¢
results are shown for the staggered and nonstagd®red Py_> SEM, respectively. After

t = 2.5 the divergence at the pressure points increases also and the simulation blows
due to nonlinear effects. Furthermore, it is obvious from Fig. 4 and Fig. 5 that the growth
the divergence at the velocity point&live, ul, is related to the growth of the perturbation
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FIG. 4. Results for staggereléy — Py_, SEM. Comparison of divergence errorlig-norm at pressure points
ldivg |l and at velocity point§dives, ||, and the perturbation velocifjy'||, for the abridged convective operator

Ca(.

velocity u']| := [|(ug — (1 — x2), uz)" ||, which has the same slope but is about two order:

of magnitude larger thajdivg u]l.
Further numerical simulation results show that the operator

(divu® ), v)n — Udivu v)n, (29)
which is equivalent to the convective forf@..(UU v), is Stable, while the operator
((u-gradu, v)n + (udivu v)y, (30)

which is equivalent to the divergence fo@g, (WU v) N, is unstable. This clearly demon-
strates that it is indeed the tei@ of Eq. (28) which causes the instability. For the same
reason, the skew-symmetric form is unstable, as it is equivalent to

1
Cconv + ECa (31)

It can be concluded that the Ry — Py_2 SEM, although the numerical scheme enforce:
the continuity constraint pointwise at the pressure points, it still may let the divergen

— Ildivg,,I
/| == v,
o—o ||

FIG. 5. Results for nonstaggere®, — Py_, SEM. Comparison of divergence errorlin-norm at pressure
points||divg, || and velocity points|divs, .|, and the perturbation velocityu'||, for the abridged convective

operatorC,(u).
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error grow exponentially at certain velocity poir(ise., those which differ from the pressure
pointg, allowing numerical instabilities to develop

3.2.2. Linearized Model for the Convective Operator

In Section 3.1.1 we presented numerical results for the Oseen problem, and in partic
we showed that the simulation becomes unstable for the linearized skew-symmetric
divergence forms. Thus, the instability is even present in the linearized NSE. In this sec
we discuss the relation between nonlinear and linearized convective operators.

For the example of a slightly disturbed plane Poiseuille flow the numerical soluti
u which fulfills the continuity equation only in a weak sense at the pressure points (¢
Eq. (18)), can be decomposed into a given divergence-free veloeityl — x2, 0)T and
an “error term’s, i.e.

u=w+e. (32)
With this decomposition the divergence form can be written, in the discrete sense, as

divu®u),v)n = ([divu® W+ ¢)),v)N
= (divu®w), v)n + ([divu®e),v)N (33)

or as

(divu® w, v)n = (div(w+¢) ®W, V)N
= (divw® U, v)n + (dive ® U), v)N. (34)

Usingw there are two different ways to linearize the convection operator in divergen
form, namely divu®w) and divw ® U). The two linearizations are not equal fof 0 (note
that the second terms on the right-hand side of Egs. (33) and (34) differ). The two lineari
forms can be transformed into

(divu®w), v)n = (Udivw, v)n + (- VIU V)N (35)
=0 Cconv
and analogously
divw®u,v)n = wdivu v)n + (U- V)w, v)n. (36)
#0

For the firstlinearization (35) the divergence formis equal to the (linearized) convective fo
andis hence stable. In contrast, the linearization in (36) exhibits the same instability beha
as the fully nonlinear operator, which is evident from Fig. 1. Linearizations analogous
Eq. (36) are performed also for the convective and the skew-symmetric forms and they
summarized in Table II.

We denote the matrices corresponding to the linearized convective operators of Tab
by Ccons Caiv» @aNdCekew In Fig. 6 the eigenvalues of the matrid€gny, Cagiv, aNACskew
are shown. It is seen that f@ny all eigenvalues lie on the imaginary axis. Furthermore
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TABLE Il
Linearized Convective Operators

Notation Cwu Description
Ceon() U w-V)u Linearized convective form
Cav) u divw® v Linearized divergence form
Cskew@) U %(zg- Vyu+ %div(w@) u Linearized skew-symmetric form
0.4 T T
| (@) i
A<3COI1V
0.2 _
- L 4
E 00 _
-0.2 - -
-0.4 L L
-4e-08 4e-08
0.4 T T
- ® oc,, -
02 _
- - i
E 00| O Mo O o
-0.2 - -
-0.4 L 1
~4e-08 4e-08
0.4 T T
B (C) OCskew'
0.2 - _
- = i
E 00 _
-02 -
-0.4 L L
-4e-08 0e+00 4e-08

Real(A)

FIG.6. Eigenvalues of the matr'(zz. (a) Convective form, (b) divergence form, and (c) skew-symmetric form,
for N = 4, 2x 2 elements.
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the operator is skew-symmetric up to machine accuracy, and thus energy conserving
Section 2.1). FOE 4y andCgew ON the other hand, we found eigenvalues with positive res
parts which are smalk(lcrg 10-8), but significantly larger than roundoff-error level.
Among other things this shows that in the present taséliscretized skew-symmetric form
is in fact not skew-symmetrigVe computed the error in the skew-symmetry and it was ©
the same order as the real parts of the eigenvalues shown in Fig. 6.

3.3. Eigenvalue Analysis of the Fully Discretized Linear System

We have shown in the previous section that some of the linearized convection opera
have positive eigenvalues, suggesting numerical instabilities. However, to assess the
bility properties of the discretized NSEs we have to consider the eigenvalues of the fi
(temporally and spatially) discretized system. For simplicity, we confine our presentat
to a time discretization with the explicit Euler scheme for the nonlinear terms and the i
plicit Euler scheme for the linear terms here. However, we have analyzed the higher o
methods BDF3/EX3, Eq. (19), and CN/AB3 as well. As explained previously, the gene
form (21) is decoupled by the Uzawa algorithm, which leads to the equation for the pres:s
(22) in which the right-hand-sidg, contains the nonlinear and linear terms at time-step
Solving this pressure equation and substituting the pressure back into the velocity eque
yields a complicated matrix relation of the form

Ut =[H'DTS'™D+DHH - [Cw) + L]u" (37)
for which we introduce the abbreviation
n+1 é‘ (38)

whereS is the pressure matrix defined in Eq. (22) dndepresents the linear terms. It
should be noted that the boundary conditions are incorporated into the discrete opera
Ais the discrete time evolution operator, which has to be analyzed for stability as follov
An approximation of the derivativéy/ot att" is given by

ou un+l —un
8_{ A T = Eg”, (39)

Fi=—@A-1 (40)
_ " t — =/

Due to consistency is practically independent of the time-stép if At is chosen suffi-
ciently small. The condition for a stable integration of nongrowing solutions is that the re
partsi’ of all eigenvalues oF are less than or equal to zero (cf. Hirsch [12]), i.e.

M <0, Vi (41)

3.3.1. Numerical Results

We first show the results for the classical staggdPgd- Pn_» method. In Fig. 7 the
eigenvalues oF are given foiCconw Cdiv, aNdCskewin EQ. (37) N = 4, 2 x 2 elements).
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FIG. 7. Results for staggereBy — Py_, SEM. Eigenvalues of the matrix of the fully discretized system.
(a) Convective form, (b) divergence form, and (c) skew-symmetric formi\fer 4, 2 x 2 elements.

The numerical data (see Table Il and Table V) clearly show that for the convective fol
the real parts of the eigenvalues are negative (Afgx=: Af,,, ~ —3.3 x 10°%), while
they are positive for the divergence for¢hy,,, ~ 1.13) and the skew-symmetric form
(AMhax =~ 0.736). Thus, condition (41) is violated for the divergence form and the skev
symmetric form, which leads to the numerical instability observed. Furthermore, in Fig

the same eigenvalue behavior can be seen for the nonstagBgredPy_, SEM. For
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TABLE 11l
Eigenvalues of the Fully Discretized System

N '::(gconv) E (gskew> E (gdiv)
2 —3.2747E- 4 0.0799 0.3542
4 —3.2899E— 4 0.7363 1.1287
6 —3.2899E—- 4 2.1817 3.0082
8 —3.2899E—- 4 4.0854 5.2528
10 —3.2899E- 4 6.3289 7.6979
12 —3.2899E—- 4 8.8198 10.216
14 —3.2899E—- 4 11.498 12.707

Note.Maximal real parts of the eigenvalues of the fully discretized sys-
tem @, of matrix F), for different convective operators, as a function of
the polynomial de&reéd on the elementsRe= 7500, At = 1074, 2x 2
elements. (Results for staggered method.)

the convective form the real parts of the eigenvalues are also negative (and of the s
magnitude as in Fig. 7(a)), while significant positive real parts are found for the diverger
and skew-symmetric forms. Moreover, it can be seen from Fig. 9 that for the unsta
formulationCgjy (for the staggered approach) the eigenvalue with maximal reakpagt
grows with the polynomial degrel, and that the real part of the eigenvalue is positive
even for the smallest possible polynomial degree (i.e.Nfet 2).

In addition to this examination of the implicit/explicit Euler method, we confirmed th
same instability for the BDF3/EX3 and CN/AB3 time-discretization schemes with prac
cally identical eigenvalues,,, of the corresponding matricé€s The instability was also
present when the Uzawa algorithm was replaced by a time-splitting scheme [20] applie
the Py — Pn_2 method.

It should be noted that the largest positive eigenvalyg indeed agrees with one half
of the observed amplification rate of the kinetic energy for the various linearized forn
lations of the convective term, as it should. For example (for the staggered method), v
N = 8 and 4x 4 elements)[, ., ~ 10.42 for the divergence form arid,,, ~ 8.03 for the
skew-symmetric form, while the corresponding slopes in Fig. 1 (in the linear region 0
t <1.3) are about 20.5 and 15.5 for the divergence and skew-symmetric forn
respectively.

TABLE IV
Eigenvalues of the Fully Discretized System

K1 x K3 2x2 2x 4 4% 4
FCeon —3.2899E— 4 —3.2899E— 4 —3.2899E— 4
FCoew 4.0854 5.23592 8.0334
FCaw) 5.2528 6.45622 10.4224

Note. A, of matrix F, for different convective operators, as a function

of the number of elementd\ = 8, At = 10, Re= 7500. (Results for
staggered method.)
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FIG.8. Resultsfornonstaggerd — Py_, SEM. Eigenvalues of the matrix of the fully discretized system.
(a) Convective form, (b) divergence form, and (c) skew-symmetric formi\fer 4, 2 x 2 elements.

3.3.2. Reynolds Number Influence

We investigated the influence of the Reynolds nuniewn the stability behavior, using
again plane Poiseuille flow as a test problem. In Fig. 10 and Table V the maximum of 1
real parts of the eigenvalues are given as a functidteddr different formulations o€ (for
the staggered method). It can be seen that for the divergence and the skew-syr_nmetric fi
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FIG. 9. Maximum real parts and imaginary parts of eigenvalues of m&rfer Cqy, as a function of the
polynomial degreé\. (Results for staggereldy — Py_» SEM.)

AMaax DECOMES positive dRe~ 40 andRe~ 100, respectively, while for the convective
form Aj, ., remains negative for all Reynolds numbers. In Fig. 10 and Fig. 11 a log-I¢
plot of |A,,, IS shown as a function d?efor the staggered and nonstaggered approache

respectively. It is obvious from the curves that for low Reynolds numbprs grows
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FIG. 10. Maximum real eigenvalues of matrk of the fully discretized system, for different formulations
of C as a function of the Reynolds numtiRe(2 x 2 elementsN = 8). Linear and logarithmic representation of
Mnax @Nd |27 |, respectively. (Results for staggerBd — Py_, SEM.)
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TABLE V
Eigenvalues of the Fully Discretized System

Re 10 40 100 1000 7500 10000

FCeon) —0.2461 —6.1685E—2 —24667E—2 —24673E—3 —32899E—4 —24673E-4

FCsew —0.2461 -0.0617 0.0246 3.3368 4.0854 41121
FCav —0.2461 0.0664 1.7254 4.4962 5.2528 5.2782
Note. A’ of matrix F for different convective operators, as a functionRd N =8, At =104, 2x 2

max

elements. (Results forgtaggered method.)

proportionally to YRefor all three formulations, which is identical to the results obtainec
for a Fourier discretization scheme. However, for higher Reynolds numlgrsgrows
much faster (and finally becomes positive) for the divergence and skew-symmetric fori
Thus, for low-enough Reynolds numbers all three formulations are stable, which agr
with the results of Rgnquist [23], who found the skew-symmetric form to be stable f
Re < 100 for the same test problem. However, we recall that the computed time evolut
nevertheless is likely to be inaccurate for the unstable formulations, as was demonstr
by example of Fig. 3.

4. SUMMARY AND DISCUSSION

In this study we investigated the effects of the formulation of the nonlinear term on t
numerical stability of certain spectral element methods. We have shown that, in the fral
work of Py — Py_2 spectral element simulations of the time-dependent NSEs, only tl
convective form is stable, while the divergence and skew-symmetric forms are unsta
A numerical eigenvalue analysis revealed that this instability is caused by the spatial
cretization in the latter forms. We have analyzed both the classical staggered [19] and
nonstaggered [22Py — Py_2> SEMs and obtained the same stability behavior for the twe
methods.

The numerical instability is related to the divergence error of the computed soluti
at those velocity points where the continuity equation is not enforced by the numeri

10
10° .
_ 10
g E
. E .
= 10° E
10° [ B—EFC.) ]
b—2A F(Cskew) N 3
10_4 ! _|_|_||-|.||I}\'(R|e|)|=;l|/|ﬁe L1l I |\|TH|

1 10 100 1000 10000

Re

FIG. 11. Results for nonstaggereley — Py_», SEM. Maximum real eigenvalues of matri of the fully
discretized system, for different formulations ©fas a function of the Reynolds numbRe (2 x 2 elements,
N = 8) in logarithmic representation.
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scheme. We have also shown that the discretized skew-symmetri€togms not exactly
skew-symmetric. Thus, the skew-symmetric form does not conserve kinetic energy, wt
may finally lead to a numerical instability.

This observed stability behavior is in contrast to the situation with Fourier methoc
where the skew-symmetric form is found to be stable [18, 27]. Moreover, in [18] aliasi
errors are shown to be lower with the skew-symmetric form than with the convective &
divergence forms. Also, aliasing errors are reduced with increasing resolution, while for
unstable formulation using thgy — Py_» SEM, the instability growth rate increases with
the resolution. Here the divergence error is much more severe than aliasing errors, w
are generally present as well.

The instability is present in all time-discretization schemes, and it is independent
temporal resolution. In fact, the instability is introduced by the spatial-discretization sche
already in the semidiscretized equations. Only viscous damping at sufficiently low Reync
numbers can stabilize the scheme. For very low Reynolds nunt®ers 40, in the example
considered) all formulations are stable, but it is shown that for low Reynolds numbers
skew-symmetric form gives inaccurate temporal predictions.
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