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We show that for thePN − PN−2 spectral element method, in which velocity and
pressure are approximated by polynomials of orderN andN − 2, respectively, nu-
merical instabilities can occur in the spatially discretized Navier–Stokes equations.
Both a staggered and nonstaggered arrangement of theN − 2 pressure points are
considered. These instabilities can be masked by viscous damping at low Reynolds
numbers. We demonstrate that the instabilities depend on the formulation of the
nonlinear term. The numerical discretization is stable for the convective form but
unstable for the divergence and the skew-symmetric form. Further numerical anal-
ysis indicates that this instability is not caused by nonlinear effects, since it oc-
curs for linearized systems as well. An eigenvalue analysis of the fully discretized
system shows that an instability is introduced by the formulation of the nonlinear
term. We demonstrate that the instability is related to the divergence error of the
computed solution at those velocity points at which the continuity equation is not
enforced. c© 2001 Elsevier Science

Key Words:spectral element method; Navier–Stokes equations; numerical insta-
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1. INTRODUCTION

We consider flow simulations at high Reynolds numbers with a scheme that provides high
accuracy and geometrical flexibility. For this purpose, the incompressible Navier–Stokes
equations are discretized in time by mixed implicit/explicit finite-difference schemes and
in space by a spectral element method (SEM). Spectral element methods are based on
the decomposition of the computational domain into a numberK of subdomains. In each
subdomain the solution is expanded in tensor-product-based Jacobi polynomials of order
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N. As basis functions, Lagrange polynomials based on Gauss and Gauss–Lobatto points
are often used.

In numerical simulations of incompressible flows the momentum equations have to be
solved under the continuity constraint. This can be achieved either by solving the entire
system for pressure and velocity in a coupled manner or by decoupling the velocity from
the pressure. In spectral element simulations both approaches have been employed. For
example, Karniadakis and co-workers [14, 15, 24] use a high-order splitting method, where
velocity and pressure are discretized at the same points (PN − PN method). They deduce a
Poisson equation for the pressure, which is solved at every time step together with boundary
conditions derived from the previous velocity fields. The method introduces a splitting error,
which can be made of higher order in the time step. To avoid this splitting error, the influence
matrix technique (see, e.g., [4, 16, 17]) can be applied, which is also aPN − PN method. This
technique also utilizes a Poisson equation for the pressure, but the boundary conditions are
derived from the continuity equation at the boundaries of the domain. This provides a clean
treatment of the pressure boundary conditions but has a drawback of high computational
costs when in three dimensions (3D) no homogeneity can be exploited in any direction.
However, if the computational domain is periodic in one or two directions, the influence
matrix technique can be applied very efficiently (see, e.g., [10, 11]).

When momentum and continuity equations are solved in a coupled fashion, the spaces of
the basis functions for the velocityuand the pressureq have to satisfy the well-knowninf-
supcondition (see, e.g., [3]). To comply with this condition in SEM, the pressureq and the
velocityuare often approximated by functions belonging to different spaces. For example,
in the PN − PN−2 method,u is represented by polynomials two orders higher thanq [7,
8, 19]. By this approach, pressure boundary conditions are avoided, and the entire system
can be solved using the Uzawa technique [3]. In the present paper, we analyze two variants
of the PN − PN−2 SEM. One is the classical method of Maday and Patera [19], whereu is
discretized at the Gauss–Lobatto–Legendre (GL) points andq at the Gauss–Legendre (G)
points. The other one is thePN − PN−2 method used by Rønquist [22] in which the velocity
u is discretized at theN + 1 GL points and the pressure at theN − 1 inner GL points in
each element. The first method is referred as the “staggered” approach and the second as
the “nonstaggered” approach throughout this paper.

The discretization of the incompressible Navier–Stokes equations can be performed in
several ways, which differ in the formulation of the nonlinear term (for an overview of
the formulations see, e.g., Gresho [9]). Among these alternatives are the convective form
(u· ∇)u, the divergence form div(u⊗u), the skew-symmetric form1

2(u· ∇)u+ 1
2 div(u⊗

u), and the rotational form−(u× rot u)+ 1
2 ∇ |u|2 (here the tensor product of two vectors

is expressed by the operator⊗). In the past, the rotational and convective forms were the
preferred choices for many flow simulations (see, e.g., Canutoet al. [4]), because of their
simplicity and computational efficiency. Several authors (e.g., Zang [27] and Blaisdellet al.
[2]) suggested that, at least for single-domain spectral methods, the skew-symmetric form
should be used, in order to minimize aliasing errors. In a recent work, Kravchenko and Moin
[18] analyzed aliasing and truncation errors for spectral and finite-difference calculations
using different formulations of the nonlinear term. They found that for spectral and higher
order finite-difference methods aliasing errors are more harmful than for low-order finite-
difference methods. Furthermore, they showed that for Fourier spectral and finite-difference
methods the skew-symmetric and the rotational forms are energy conserving even in the
presence of aliasing errors. Horiuti and Itami [13] examined the truncation error of the
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rotational form for a low-order finite-difference method, which they applied in a direct
numerical simulation of turbulent channel flow.

In [25] we showed that the skew-symmetric formulation, as well as the divergence and the
standard rotational formulations, of the nonlinear term can lead to numerical instabilities
in the staggeredPN − PN−2 SEM, while the convective and a variant of the rotational
formulation are stable. The purpose of the present paper is to extend this examination to
the nonstaggeredPN − PN−2 method and to analyze and clarify the observed instabilities.
We perform an eigenvalue analysis of the fully discretized system and demonstrate that
an instability is introduced by some formulations of the nonlinear term. We show that this
instability is not caused by nonlinear effects but that it occurs also for a linearized problem.
It is also confirmed that the instability is not affected by the choice of the time-discretization
scheme, as it is present already in the semidiscretized equations. Moreover, the influence
of the Reynolds number on the instability is discussed.

2. DISCRETIZATION OF NAVIER–STOKES EQUATIONS

We consider the incompressible Navier–Stokes equations (NSEs) on a domainÄ given
by

∂u

∂t
− 1

Re
1u+∇q = −C(u)u+ f, (1)

divu= 0, (2)

together with appropriate initial and boundary conditions. Here,u denotes the velocity,
C(u)uis the nonlinear term,q is the pressure, andf is a forcing term. The Reynolds number
Re= U L/ν is based on a characteristic velocityU, a characteristic lengthL, and the
kinematic viscosityν.

2.1. Energy Conservation Properties of Navier–Stokes Equations

The kinetic energy of the flow withinÄ is obtained by multiplying Eq. (1) withu and
integrating overÄ. This yields

1

2

d

dt
(u,u) = − 1

Re
(∇u,∇u)+ ( f,u)+ (q, divu)− (C(u)u,u), (3)

where, for simplicity, homogeneous Dirichlet boundary conditions foruare assumed. The
inner product(·, ·) is defined by

(u, v) =
∫
Ä

u(x)v(x) dx. (4)

Note that the integrals of the pressure gradient and the viscous term are integrated by parts,
exploiting the homogeneous boundary conditions. Employing the continuity Eq. (2), the
equation of the kinetic energy for a flow without external forces( f = 0) is given by

1

2

d

dt
(u,u) = − 1

Re
(∇u,∇u)− (C(u)u,u). (5)
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The convective operatorC is skew-symmetric and conserves kinetic energy, as can be shown
easily. Considering the convective term in the form(u· ∇)u, integration by parts for a given
vector fieldv yields

(C(u)u,v) = −(u, C(u)v)− (udivu, v)+
∫
∂Ä

(u· v)(u·n) ds, (6)

wheren is the normal vector on∂Ä. In the continuous case divu vanishes, so that for
homogeneous boundary conditions onuwe obtain

(C(u)u,v) = −(u, C(u)v). (7)

Thus, the convective operator is skew-symmetric and conserves kinetic energy, since for
u= v Eq. (7) can only be satisfied if

(C(u)u,u) ≡ 0. (8)

In a numerical solution the continuity equation (2) is satisfied only in some discrete sense,
with the consequence that(udivu,u) does not vanish exactly in general and the convective
operator is not necessarily energy conserving. Whether or not the divergence term(udivu,u)
vanishes depends on the discretization of the convective operator.

2.2. Spatial Discretization

For the spatial discretization, Eqs. (1) and (2) are transformed into weak form: Find(u,q)
in X × M such that∀v ∈ X0, ∀g ∈ M

(∂u/∂t,v)+ 1

Re
(∇u,∇v)− (q, divv) = −(C(u)u,v)+ ( f,v), (9)

(g, divu) = 0. (10)

The spaces foru,v andq, g are defined as

X = {v ∈ (H1(Ä)
)d
,v satisfies the required boundary conditions

}
, (11)

X0 =
{
v ∈ (H1(Ä)

)d
,v = 0 on the boundary

}
, (12)

M =
{

q ∈ L2(Ä),

∫
Ä

q(x) dx = 0

}
, (13)

whered is the number of velocity components,L2(Ä) is the space of all square integrable
functions overÄ, andH1(Ä) is the space of all functions inL2(Ä) whose first derivatives
are also inL2(Ä).

The discretization proceeds by decomposing the computational domainÄ into a number
K of non-overlapping subdomainsÄk (spectral elements). In each element the solution
is expanded in tensor-product-based polynomials of orderN, and the discrete polynomial
subspacesXN ⊂ X andMN ⊂ M , in which the velocity and the pressure are approximated,
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have to be defined properly. For simplicity, in the following we confine ourselves to two-
dimensional flows. In order to avoid spurious pressure modes, Maday and Patera [19]
suggested the approximation spaces

XN,0 = X0 ∩ P2
N,K (Ä)× P2

N,K (Ä), (14)

XN = X ∩ P2
N,K (Ä)× P2

N,K (Ä), (15)

MN = M ∩ P2
N−2,K (Ä), (16)

wherePN,K is the space of all 1D polynomials of degree equal to or less thanN, re-
stricted toÄk, andP2

N,K is the tensor product ofPN,K in two dimensions. The velocities
are approximated by the Lagrange interpolation polynomials based on theN + 1 Gauss–
Lobatto–Legendre (GL) points, and we consider two different approaches for the pressure
discretization. The first is the classical staggered method [19], where the pressure is dis-
cretized by the Lagrange interpolation polynomials based on theN − 1 Gauss–Legendre
(G) points. The second approach is the nonstaggered method (see, e.g., [22]), where the
pressure is discretized at theN − 1 inner GL points in each spectral element. In both cases
we refer to the respective set of points as “pressure points.” For the nonstaggered approach
all inner products in (9) and (10) are evaluated by Gauss–Lobatto integration. In the stag-
gered method the terms(q, divv) and(g, divu) are evaluated by Gauss integration, while
all other terms are evaluated by Gauss-Lobatto integration. Note that all higher dimensional
integration rules are obtained by tensor products of the 1D formulas.

The final discretized weak form of Eqs. (1) and (2) then reads: Find(u,q) ∈ XN × MN

such that∀v ∈ XN,0 and∀g ∈ MN

(∂u/∂t,v)N + 1

Re
(∇u,∇v)N − (q, divv)N = −(C(u)u,v)N + ( f,v)N, (17)

(g, divu)N = 0, (18)

where(·, ·)N indicates the discrete inner product. Since the velocityuand the test functions
v are defined in spaces different from those of the pressureq and the test functionsg,
interpolations have to be used before the integrals in(q, divv)N and (g, divu)N can be
evaluated.

As pointed out before, the nonlinear term can be written in different ways. The various
formulations analyzed in the present paper are summarized in Table I. Note that all deriva-
tives ofuare computed at the velocity points. This is in contrast to the continuity equation
(18), where the derivatives ofuare computed at the pressure points.

TABLE I

Formulations of the Convective Term

Notation C(u)u Description S/U

Cconv(u)u (u· ∇)u Convective form S
Cdiv(u)u div (u⊗ u) Divergence form U
Cskew(u)u

1
2
(u· ∇)u+ 1

2
div(u⊗ u) Skew-symmetric form U

Note.u⊗ v is the tensor product ofuandv. The inner product isu· v;u is the velocity.S= stable,
U = unstable, according to present analysis.
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2.3. Temporal Discretization

The semidiscrete Eqs. (17) and (18) are now discretized in time, assumingf ≡ 0. The
linear terms 1/Re(∇u,∇v)N and(q, divv)N are treated implicitly, while the nonlinear term
(C(u)u,v)N is treated explicitly. Two different time-discretization schemes are employed.
The first scheme we use is a Crank–Nicolson scheme for the linear term and the pressure,
together with a third-order Adams–Bashforth method (CN/AB3) for the nonlinear term. The
second scheme employs a third-order backward differentiation scheme for the linear term
together with a third-order extrapolation for the nonlinear term (BDF3/EX3), according to
Karniadakiset al. [15]. The latter is discussed in the following in more detail.

The BDF3/EX3 time discretization leads to a fully discretized form of the NSEs[
1

Re
E + κB

]
un+1− DTqn+1 = 1

1t

[
3Bun − 3

2
Bun−1+ 1

3
Bun−2

]
+ 3C(un)un

− 3C(un−1)un−1+C(un−2) un−2, (19)

D un+1 = 0, (20)

whereE,DT ,D, andC denote the discrete versions of the Laplacian, the gradient, the
divergence, and convective operators, respectively.B is the (diagonal) mass matrix with
κ = 11/(61t). Hereinun andqn denote the pointwise values ofu andq at velocity and
pressure points, respectively, at time steptn = n1t . The fully discrete system (19), (20)
can be recast into the general form[

H −DT

−D 0

][
un+1

qn+1

]
=
[

g

0

]
, (21)

with the Helmholtz operator

H =
[

1

Re
E + κB

]
,

and where the right-hand side has the form

g = g (C(un)un,C(un−1)un−1,C(un−2)un−2,un,un−1,un−2).

The general form (21) can be solved using the classical Uzawa algorithm (see, e.g., [3]).
In this approach the momentum equation is formally solved for the velocityun+1, which is
then inserted into the continuity equation. This leads to an equation for the pressure,

D H−1 DT︸ ︷︷ ︸
=:S

qn+1 = −D H−1 g =: r q, (22)

with the right-hand sider q. From the pressureqn+1 the velocityun+1 is evaluated according
to Eq. (21).

Beside the Uzawa algorithm we also employed a special time-splitting approach for the
PN − PN−2 SEM suggested by Madayet al. [20] and extended to more general finite-
element methods by Perot [21]. This approach, which was used for example by Couzy [6]
and Fischer [8], is similar to the Uzawa algorithm in that no pressure boundary conditions
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are needed. However, since we obtained essentially the same instability results as for the
Uzawa algorithm, we confine our presentation to the latter algorithm. (Note that the time-
splitting approach in [20] is not to be confused with the classical time-splitting method [5,
15] often used inPN − PN SEMs).

3. RESULTS

3.1. Numerical Results for the Different Formulations

The classicalPN − PN−2 SEM, in which velocity is discretized at the GL points and
pressure at the G points, was applied previously to various flow problems. Maday and Patera
[19], in their fundamental paper on this technique, simulated the 2D flow past a cylinder
at Re= 150 and the flow around a cylinder in a grooved channel atRe= 225. Couzy [6]
performed a simulation of the flow over a backward-facing step in 3D at Reynolds numbers
up to Re= 343. Only very few simulations using thisPN − PN−2 SEM at significantly
higher Reynolds numbers have been presented so far, one of these being the study of 2D
flow past a cylinder atRe= 9500 by Fischer [8]. He also reported on the simulation of the
linear-stability problem of plane channel flow atRe= 7500, where the parabolic mean flow
is disturbed by small-amplitude 2D Tollmien–Schlichting waves. The growth rate of the
perturbation energy was compared with the solution from linear-stability theory and it was
shown that for sufficiently fine discretization an excellent agreement is achieved. The same
test case was studied in our previous work [25], where we showed that good agreement
with the linear-stability theory can only be obtained if the convective form of the nonlinear
term is employed. The divergence form or the skew-symmetric form, on the other hand, led
to numerical instabilities. Note that in [8] Fischer also used the convective form (private
communication, 1999). The present method was employed in [26] for a study of the 3D
forward-facing step flow.

3.1.1. Nonlinear Results and Linearization

The numerical instabilities observed in [25] are analyzed more closely in the following. As
a test case we consider a 2D plane channel flow atRe= 7500, based on half channel height
and centerline velocity, with periodic boundary conditions in the streamwise direction and
no-slip conditions at the walls. The flow is driven by a pressure gradientd P/dx = −2/Re.
As an initial condition, a laminar Poiseuille profile is prescribed, which is disturbed by
numerical noise of order 10−12. We computed the time history of the perturbation energy

E(t) =
∫ 2π

0

∫ 1

−1

[(
1− x2

2 − u1
)2+ u2

2

]
dx1 dx2 (23)

obtained for different formulations of the nonlinear term according to Table I. In Fig. 1 the
results for the classical staggered approach are shown. It is evident from the figure that
the simulation results are strongly dependent on the formulation of the nonlinear term. For
the divergence form and the skew-symmetric formE(t) grows exponentially and the simu-
lation becomes unstable. A stable solution is obtained for the convective form only. In Fig. 2
the simulation results for the nonstaggeredPN − PN−2 SEM are shown. It is remarkable
that we obtain the same stability behavior as for the classical approach (i.e., the divergence
and skew-symmetric forms are unstable and the convective form is stable).
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FIG. 1. Time history of perturbation energyE(t) in plane channel flow for classical staggeredPN − PN−2 SEM.
Comparison of results from Navier–Stokes simulations (nonlin) and simulations based on the Oseen equations
(lin). Results for different formulations of the convective termC (Re= 7500, 4× 4 elements,N = 8).

To simplify the problem and exclude nonlinear effects, we consider the Oseen equations
[1] which are the linearized form of the NSEs

∂u

∂t
− 1

Re
1u+∇q = −C(w)u, (24)

divu= 0, (25)

wherew is a given divergence-free velocity field. At this point we confine our presentation
of the linear results to the classical (staggered) approach. For our test case,w is taken as
the laminar plane Poiseuille flow. The results obtained for different formulations of the
linearized convective operator are also given in Fig. 1. It can be seen that for the linearized
divergence and skew-symmetric forms the amplification rate of the perturbation energy is
smaller than for the nonlinear case, but the energy nonetheless also grows exponentially (for
E(t) < 10−2). It is evident from the figure that a linear numerical instability is introduced
by the divergence form and the skew-symmetric form of the convective term, which is not
related to nonlinear effects.

FIG. 2. Time history of perturbation energyE(t) in plane channel flow for nonstaggeredPN − PN−2 SEM.
Navier–Stokes simulation for different formulations of the convective termC (Re= 7500, 4× 4 elements,N = 8).
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We analyzed this instability with respect to its dependence on the temporal and spa-
tial resolution and found no effect on the general stability properties. (Of course, the
time step was always chosen well below the CFL stability limits of the EX3 and AB3
schemes, respectively.) Furthermore, the effect of the boundary conditions was tested. In
SEM only C0 continuity over the boundaries is required, which means that the deriva-
tives of the velocity are not forced to be periodic. In order to exclude the possibility that
the stability problem originates from the special treatment of the periodic boundaries, we
conducted simulations where the periodic boundary conditions were replaced by Dirich-
let conditions, and encountered the same instability.Only for sufficiently low Reynolds
numbers(below Re= 100, in the considered problem) did all the schemes remain sta-
ble, irrespective of the treatment of the nonlinear terms. This is obviously due to viscous
damping, as discussed in the following. We remark here that the formulationCconv re-
mains stable far beyond the short initial time shown in Fig. 1. We have conducted simula-
tions over long integration times,t > 1000, in which this formulation did not develop any
instability.

3.1.2. Effect of Viscous Damping

It is interesting to note that we found the skew-symmetric form to be unstable, while other
investigations (e.g., Rønquist [23], who used the nonstaggerPN − PN−2 SEM) suggested
that it should be the preferred choice inPN − PN−2 SEM. However, Rønquist [23] analyzed
a plane channel flow at the rather low Reynolds number of about 200, while we consider
a test case forRe= 7500, where the physical damping is much smaller. Although for low
Reynolds numbers the numerical instability is masked by the physical damping, accuracy
suffers from this (“unstable”) formulation of the nonlinear term. To investigate the influence
of the skew-symmetric form on accuracy, we employed the staggered SEM to the simulation
of the Orr–Sommerfeld test problem, used by Fischer [8], but for lower Reynolds numbers.
In Fig. 3 we compare the exact solution of the linear stability theory with the simulation
results atRe= 100 andRe= 500. ForRe= 500, where viscous damping is already very
small, the simulation becomes unstable. On the other hand, the simulation forRe= 100
remains stable, but the damping rate does not agree with the exact rate forRe= 100; it rather

FIG. 3. Time history of computed perturbation energyEn in plane channel flow for convective operator in
skew-symmetric form at different Reynolds numbers (N = 12, 2× 2 elements). Comparison with resultsEex of
linear stability theory. (Results for staggered method.)
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agrees with that forRe= 500.Thus, even for low Reynolds numbers where the scheme is
stable, inaccurate growth rates are obtained when using the skew-symmetric form.

3.2. Discussion of the Discretized Convective Term

3.2.1. Nonlinear Operators

Since numerical instability is related to the formulation of the nonlinear term, it is appro-
priate to investigate the discretized nonlinear term. In the continuous case all formulations
of C are equivalent and the divergence form can be transformed into the convective form
by means of the continuity equation

C(u)u= div (u⊗u) = (u· grad)u+u divu︸︷︷︸
=0

. (26)

However, in the discrete case the divergence form is numerically equivalent to the convective
form plusan additional divergence term, i.e.

(Cdiv(u)u,v)N ≡ (div (u⊗u),v)N = ((u· grad)u,v)N + (udivu,v)N︸ ︷︷ ︸
6=0

. (27)

The divergence term on the right-hand side of Eq. (27) does not vanish exactly, because the
continuity constraint is enforced at the pressure points only.

Note that in the computation of the products in the nonlinear term, Eq. (27), and in
similar equations later in this work, additional aliasing errors occur. A possible concern is
that these aliasing errors could cause the observed instability. In fact, for a Fourier spectral
scheme Kravchenko and Moin [18] reported that the instability that occurred with some
formulations of the nonlinear term could be removed by dealiasing. However, P. F. Fischer
(private communication, 2001) found that for the same numerical scheme as used herein
(i.e., PN − PN−2 SEM based on a staggered grid) dealiasing did not remove the instability.
Note also that aliasing errors can be made very small by increasing the resolution, whereas
the divergence term will turn out to be dominant and to cause the observed instabilities,
which become worse with increasing resolution. For this reasons, aliasing errors are not
explicitly considered in the present paper.

For a further investigation of the divergence term, we consider an abridged operator
consisting of the second term of Eq. (27) only,

(Ca(u)u,v)N := (udivu,v)N . (28)

For a plane parallel flow such as the undisturbed plane Poiseuille flow the first term in
Eq. (26) vanishes, so thatCa is equal toCdiv of Eq. (27). Performing an (undisturbed)
Poiseuille flow simulation with this form of the convective operator, we found that theL2-
norm of the divergence at the pressure points indeed remains at roundoff-error level, while
the divergence ofuat the velocity points grows exponentially in time. In Fig. 4 and Fig. 5
results are shown for the staggered and nonstaggeredPN − PN−2 SEM, respectively. After
t = 2.5 the divergence at the pressure points increases also and the simulation blows up,
due to nonlinear effects. Furthermore, it is obvious from Fig. 4 and Fig. 5 that the growth of
the divergence at the velocity points,‖divGL,u‖, is related to the growth of the perturbation
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FIG. 4. Results for staggeredPN − PN−2 SEM. Comparison of divergence error inL2-norm at pressure points
‖divG,p‖ and at velocity points‖divGL,u‖, and the perturbation velocity‖u′‖, for the abridged convective operator
Ca(u).

velocity‖u′‖ := ‖(u1− (1− x2
2), u2)

T‖, which has the same slope but is about two orders
of magnitude larger than‖divGL,u‖.

Further numerical simulation results show that the operator

(div (u⊗u),v)N − (udivu,v)N, (29)

which is equivalent to the convective form(Cconv(u)u,v)N , is stable, while the operator

((u· grad)u,v)N + (udivu,v)N, (30)

which is equivalent to the divergence form(Cdiv(u)u,v)N , is unstable. This clearly demon-
strates that it is indeed the termCa of Eq. (28) which causes the instability. For the same
reason, the skew-symmetric form is unstable, as it is equivalent to

Cconv+ 1

2
Ca. (31)

It can be concluded thatin the PN − PN−2 SEM, although the numerical scheme enforces
the continuity constraint pointwise at the pressure points, it still may let the divergence

FIG. 5. Results for nonstaggeredPN − PN−2 SEM. Comparison of divergence error inL2-norm at pressure
points‖divGL,p‖ and velocity points‖divGL,u‖, and the perturbation velocity‖u′‖, for the abridged convective
operatorCa(u).
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error grow exponentially at certain velocity points(i.e., those which differ from the pressure
points), allowing numerical instabilities to develop.

3.2.2. Linearized Model for the Convective Operator

In Section 3.1.1 we presented numerical results for the Oseen problem, and in particular
we showed that the simulation becomes unstable for the linearized skew-symmetric and
divergence forms. Thus, the instability is even present in the linearized NSE. In this section
we discuss the relation between nonlinear and linearized convective operators.

For the example of a slightly disturbed plane Poiseuille flow the numerical solution
u, which fulfills the continuity equation only in a weak sense at the pressure points (see
Eq. (18)), can be decomposed into a given divergence-free velocityw= (1− x2

2, 0)
T and

an “error term”ε, i.e.

u=w+ ε. (32)

With this decomposition the divergence form can be written, in the discrete sense, as

(div(u⊗u),v)N = (div(u⊗ (w+ ε)),v)N

= (div(u⊗w),v)N + (div(u⊗ ε),v)N (33)

or as

(div(u⊗u),v)N = (div((w+ ε)⊗u),v)N

= (div(w⊗u),v)N + (div(ε ⊗u),v)N . (34)

Usingw there are two different ways to linearize the convection operator in divergence
form, namely div(u⊗w) and div(w⊗u). The two linearizations are not equal forε 6= 0 (note
that the second terms on the right-hand side of Eqs. (33) and (34) differ). The two linearized
forms can be transformed into

(div(u⊗w),v)N = (udivw,v)N︸ ︷︷ ︸
=0

+ ((w · ∇)u,v)N︸ ︷︷ ︸
Cconv

(35)

and analogously

(div(w⊗u),v)N = (wdivu,v)N︸ ︷︷ ︸
6=0

+ ((u· ∇)w,v)N . (36)

For the first linearization (35) the divergence form is equal to the (linearized) convective form
and is hence stable. In contrast, the linearization in (36) exhibits the same instability behavior
as the fully nonlinear operator, which is evident from Fig. 1. Linearizations analogous to
Eq. (36) are performed also for the convective and the skew-symmetric forms and they are
summarized in Table II.

We denote the matrices corresponding to the linearized convective operators of Table II
by Cconv, Cdiv, andCskew. In Fig. 6 the eigenvalues of the matricesCconv, Cdiv, andCskew

are shown. It is seen that forCconv all eigenvalues lie on the imaginary axis. Furthermore,



318 WILHELM AND KLEISER

TABLE II

Linearized Convective Operators

Notation C(w)u Description

Cconv(w)u (w · ∇)u Linearized convective form
Cdiv(w)u div (w⊗ u) Linearized divergence form
Cskew(w)u

1
2
(w · ∇)u+ 1

2
div(w⊗ u) Linearized skew-symmetric form

FIG. 6. Eigenvalues of the matrixC. (a) Convective form, (b) divergence form, and (c) skew-symmetric form,
for N = 4, 2× 2 elements.
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the operator is skew-symmetric up to machine accuracy, and thus energy conserving (see
Section 2.1). ForCdiv andCskew, on the other hand, we found eigenvalues with positive real
parts which are small (∼10−9− 10−8), but significantly larger than roundoff-error level.
Among other things this shows that in the present casethe discretized skew-symmetric form
is in fact not skew-symmetric. We computed the error in the skew-symmetry and it was of
the same order as the real parts of the eigenvalues shown in Fig. 6.

3.3. Eigenvalue Analysis of the Fully Discretized Linear System

We have shown in the previous section that some of the linearized convection operators
have positive eigenvalues, suggesting numerical instabilities. However, to assess the sta-
bility properties of the discretized NSEs we have to consider the eigenvalues of the fully
(temporally and spatially) discretized system. For simplicity, we confine our presentation
to a time discretization with the explicit Euler scheme for the nonlinear terms and the im-
plicit Euler scheme for the linear terms here. However, we have analyzed the higher order
methods BDF3/EX3, Eq. (19), and CN/AB3 as well. As explained previously, the general
form (21) is decoupled by the Uzawa algorithm, which leads to the equation for the pressure
(22) in which the right-hand-siderq contains the nonlinear and linear terms at time-steptn.
Solving this pressure equation and substituting the pressure back into the velocity equation
yields a complicated matrix relation of the form

un+1 = [(H−1DT S−1D + I )H−1] · [C(w)+ L] un, (37)

for which we introduce the abbreviation

un+1 =: Aun, (38)

whereS is the pressure matrix defined in Eq. (22) andL represents the linear terms. It
should be noted that the boundary conditions are incorporated into the discrete operators.
A is the discrete time evolution operator, which has to be analyzed for stability as follows.
An approximation of the derivative∂u/∂t at tn is given by

∂u

∂t
≈ un+1−un

1t
= F un, (39)

where by Eq. (38)

F := 1

1t
(A− I ). (40)

Due to consistency,F is practically independent of the time-step1t if 1t is chosen suffi-
ciently small. The condition for a stable integration of nongrowing solutions is that the real
partsλr

j of all eigenvalues ofF are less than or equal to zero (cf. Hirsch [12]), i.e.

λr
j ≤ 0, ∀ j . (41)

3.3.1. Numerical Results

We first show the results for the classical staggeredPN − PN−2 method. In Fig. 7 the
eigenvalues ofF are given forCconv,Cdiv, andCskew in Eq. (37) (N = 4, 2× 2 elements).
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FIG. 7. Results for staggeredPN − PN−2 SEM. Eigenvalues of the matrixF of the fully discretized system.
(a) Convective form, (b) divergence form, and (c) skew-symmetric form, forN = 4, 2× 2 elements.

The numerical data (see Table III and Table IV) clearly show that for the convective form
the real parts of the eigenvalues are negative (max(λr

j ) =: λr
max≈ −3.3× 10−4), while

they are positive for the divergence form(λr
max≈ 1.13) and the skew-symmetric form

(λr
max≈ 0.736). Thus, condition (41) is violated for the divergence form and the skew-

symmetric form, which leads to the numerical instability observed. Furthermore, in Fig. 8
the same eigenvalue behavior can be seen for the nonstaggeredPN − PN−2 SEM. For
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TABLE III

Eigenvalues of the Fully Discretized System

N F(Cconv) F(Cskew) F(Cdiv)

2 −3.2747E− 4 0.0799 0.3542
4 −3.2899E− 4 0.7363 1.1287
6 −3.2899E− 4 2.1817 3.0082
8 −3.2899E− 4 4.0854 5.2528

10 −3.2899E− 4 6.3289 7.6979
12 −3.2899E− 4 8.8198 10.216
14 −3.2899E− 4 11.498 12.707

Note.Maximal real parts of the eigenvalues of the fully discretized sys-
tem (λr

max of matrix F), for different convective operators, as a function of
the polynomial degreeN on the elements.Re= 7500,1t = 10−4, 2× 2
elements. (Results for staggered method.)

the convective form the real parts of the eigenvalues are also negative (and of the same
magnitude as in Fig. 7(a)), while significant positive real parts are found for the divergence
and skew-symmetric forms. Moreover, it can be seen from Fig. 9 that for the unstable
formulationCdiv (for the staggered approach) the eigenvalue with maximal real partλr

max

grows with the polynomial degreeN, and that the real part of the eigenvalue is positive
even for the smallest possible polynomial degree (i.e., forN = 2).

In addition to this examination of the implicit/explicit Euler method, we confirmed the
same instability for the BDF3/EX3 and CN/AB3 time-discretization schemes with practi-
cally identical eigenvaluesλr

max of the corresponding matricesF . The instability was also
present when the Uzawa algorithm was replaced by a time-splitting scheme [20] applied to
the PN − PN−2 method.

It should be noted that the largest positive eigenvalueλr
max indeed agrees with one half

of the observed amplification rate of the kinetic energy for the various linearized formu-
lations of the convective term, as it should. For example (for the staggered method), with
N = 8 and 4× 4 elements,λr

max≈ 10.42 for the divergence form andλr
max≈ 8.03 for the

skew-symmetric form, while the corresponding slopes in Fig. 1 (in the linear region 0.7≤
t ≤ 1.3) are about 20.5 and 15.5 for the divergence and skew-symmetric forms,
respectively.

TABLE IV

Eigenvalues of the Fully Discretized System

K1× K2 2× 2 2× 4 4× 4

F(Cconv) −3.2899E− 4 −3.2899E− 4 −3.2899E− 4

F(Cskew) 4.0854 5.23592 8.0334

F(Cdiv) 5.2528 6.45622 10.4224

Note.λr
max of matrix F , for different convective operators, as a function

of the number of elements.N = 8, 1t = 10−4, Re= 7500. (Results for
staggered method.)



322 WILHELM AND KLEISER

FIG. 8. Results for nonstaggeredPN − PN−2 SEM. Eigenvalues of the matrixF of the fully discretized system.
(a) Convective form, (b) divergence form, and (c) skew-symmetric form, forN = 4, 2× 2 elements.

3.3.2. Reynolds Number Influence

We investigated the influence of the Reynolds numberReon the stability behavior, using
again plane Poiseuille flow as a test problem. In Fig. 10 and Table V the maximum of the
real parts of the eigenvalues are given as a function ofRefor different formulations ofC (for
the staggered method). It can be seen that for the divergence and the skew-symmetric forms
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FIG. 9. Maximum real parts and imaginary parts of eigenvalues of matrixF for Cdiv, as a function of the
polynomial degreeN. (Results for staggeredPN − PN−2 SEM.)

λr
max becomes positive atRe≈ 40 andRe≈ 100, respectively, while for the convective

form λr
max remains negative for all Reynolds numbers. In Fig. 10 and Fig. 11 a log–log

plot of |λr
max| is shown as a function ofRefor the staggered and nonstaggered approaches,

respectively. It is obvious from the curves that for low Reynolds numbersλr
max grows

FIG. 10. Maximum real eigenvalues of matrixF of the fully discretized system, for different formulations
of C as a function of the Reynolds numberRe(2× 2 elements,N = 8). Linear and logarithmic representation of
λr

max and|λr
max|, respectively. (Results for staggeredPN − PN−2 SEM.)
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TABLE V

Eigenvalues of the Fully Discretized System

Re 10 40 100 1000 7500 10000

F(Cconv) −0.2461 −6.1685E− 2 −2.4667E− 2 −2.4673E− 3 −3.2899E− 4 −2.4673E− 4

F(Cskew) −0.2461 −0.0617 0.0246 3.3368 4.0854 4.1121

F(Cdiv) −0.2461 0.0664 1.7254 4.4962 5.2528 5.2782

Note.λr
max of matrix F for different convective operators, as a function ofRe. N = 8, 1t = 10−4, 2× 2

elements. (Results for staggered method.)

proportionally to 1/Refor all three formulations, which is identical to the results obtained
for a Fourier discretization scheme. However, for higher Reynolds numbersλr

max grows
much faster (and finally becomes positive) for the divergence and skew-symmetric forms.
Thus, for low-enough Reynolds numbers all three formulations are stable, which agrees
with the results of Rønquist [23], who found the skew-symmetric form to be stable for
Re≤ 100 for the same test problem. However, we recall that the computed time evolution
nevertheless is likely to be inaccurate for the unstable formulations, as was demonstrated
by example of Fig. 3.

4. SUMMARY AND DISCUSSION

In this study we investigated the effects of the formulation of the nonlinear term on the
numerical stability of certain spectral element methods. We have shown that, in the frame-
work of PN − PN−2 spectral element simulations of the time-dependent NSEs, only the
convective form is stable, while the divergence and skew-symmetric forms are unstable.
A numerical eigenvalue analysis revealed that this instability is caused by the spatial dis-
cretization in the latter forms. We have analyzed both the classical staggered [19] and the
nonstaggered [22]PN − PN−2 SEMs and obtained the same stability behavior for the two
methods.

The numerical instability is related to the divergence error of the computed solution
at those velocity points where the continuity equation is not enforced by the numerical

FIG. 11. Results for nonstaggeredPN − PN−2 SEM. Maximum real eigenvalues of matrixF of the fully
discretized system, for different formulations ofC as a function of the Reynolds numberRe (2× 2 elements,
N = 8) in logarithmic representation.
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scheme. We have also shown that the discretized skew-symmetric formCskewis not exactly
skew-symmetric. Thus, the skew-symmetric form does not conserve kinetic energy, which
may finally lead to a numerical instability.

This observed stability behavior is in contrast to the situation with Fourier methods,
where the skew-symmetric form is found to be stable [18, 27]. Moreover, in [18] aliasing
errors are shown to be lower with the skew-symmetric form than with the convective and
divergence forms. Also, aliasing errors are reduced with increasing resolution, while for the
unstable formulation using thePN − PN−2 SEM, the instability growth rate increases with
the resolution. Here the divergence error is much more severe than aliasing errors, which
are generally present as well.

The instability is present in all time-discretization schemes, and it is independent of
temporal resolution. In fact, the instability is introduced by the spatial-discretization scheme
already in the semidiscretized equations. Only viscous damping at sufficiently low Reynolds
numbers can stabilize the scheme. For very low Reynolds numbers (Re< 40, in the example
considered) all formulations are stable, but it is shown that for low Reynolds numbers the
skew-symmetric form gives inaccurate temporal predictions.
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11. C. Härtel, L. Kleiser, M. Michaud, and C. F. Stein, A direct numerical simulation approach to the study of
intrusion fronts,J. Eng. Math.32, 103 (1997).

12. C. Hirsch,Numerical Computation of Internal and External Flows Vol. 1(Wiley, Chichester, 1989).

13. K. Horiuti and T. Itami, Truncation error analysis of the rotational form for the convection terms in Navier–
Stokes equation,J. Comput. Phys.145, 671 (1998).

14. G. E. Karniadakis and R. D. Henderson, Spectral element methods for incompressible flows, inThe Handbook
of Fluid Dynamics, edited by R. W. Johnson (CRC Press, Boston, 1998), p. 29-1.



326 WILHELM AND KLEISER

15. G. E. Karniadakis, M. Israeli, and S. A. Orszag, High-order splitting methods for incompressible Navier–
Stokes equations,J. Comput. Phys.97, 414 (1991).

16. L. Kleiser and U. Schumann, Treatment of the incompressibility and boundary conditions in 3-D numerical
spectral simulation of plane channel flows, inProceedings of the 3rd GAMM Conference on Numerical
Methods in Fluid Mechanics, edited by E. H. Hirschel (Vieweg, Braunschweig, 1980), p. 165.
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